高考状元谈:我看高中数学2007-4-6 13:56:00 阅读 参与讨论()

状元谈:我看高中数学
 
程晓龙 奥赛数学金牌获得者

 
    熟悉了高中数学,就会觉得它所介绍的理论并不多,《代数》就是讲函数的观点和初等函数的性质,、三角函数、复数、复向量的运算,数列和归纳原理、计数方法。《解析几何》介绍用数量化语言描述几何图形的方法和几种常用几何图形的数量性质。《立体几何》描述空间中点、线、面的位置、度量关系并着重介绍几种基本几何体。要学好高中数学,就应该对这些知识有整体的认识和把握,即理解他们所解决的问题在数学乃至实际中所起的作用。


    学习数学绝不是死记定理、公式,不是空洞的解题训练,仅注重其形式化的表面,是无法把握数学的实质的。数学的存在和发展是基于某种实际需要的,了解这种需要,即数学各部分的作用,有助于对数学这个有机整体的认识,不假思索的接受,难以导致对数学的真正了解,因此亲身接触活生生的数学就显得尤为重要。这就需要学习中对每个问题都能亲自思考、透彻理解。我通常习惯于在遇到新概念时,自己先分析、推导一下它的性质;碰到定理、公式时自己先试着证明一下,这样再学习书本上的内容时,与自己所思考的有种比较,对知识的体会就更多些,理解也能更深一点。比如说,这样做后就会比较清楚某个定理为什么会有这样的限制条件,在那些情况下适用等。清楚了逻辑上的推理之后,还应回过头来从总体上考虑一下这些结论,考虑一下它们所描述的事实与其它数学知识间的依赖关系。这样做也有助于从宏观上把握知识,对其主要观念有更深刻的领悟,最好是在一个部分的知识学完后,能花点时间整理一下这部分理论,理顺其主要知识点间的联系。这不是简单的"复习",而是确定这些东西成为你"自己"的知识。它不是单纯的看书,而应该是了解之后的深入思考,甚至你可以撇开课本,仅仅*思考和必要的演算来完成这一过程,尤其是在平时学习中,每次都是只对一小部分知识学习、做作业,比较零散,这种整体上的熟悉就显得很必要了。


    必要的习题不仅能帮助熟悉所学的知识,有些甚至能帮助理解所学的概念、定理,发掘知识更深层次上的内涵。它的另一个作用,即练习本身的作用,就是锻炼思维,而做完题之后的思考无论是对上述那一个方面都是大有裨益的,这就是做题不要局限于解决问题本身,有时可以想想问题所反映的结论,体会一下用到的方法和技巧,重要的是要明白为什么要用这种方法,即能理解方法的实质。做习题切不可因追求过多而忽略之后的反思,否则经常会出现一些无谓的反复,反而得不偿失。另外一点,就是要从不同的角度思考问题,不满足于已有的方法,即使已有的方法是最简的。从其它角度思考、解决问题能导致一些新的收获,这一点在做难度稍大的题时会更有用处。


    有些人学数学只是记下所有的定理公式,各类题型和相应的解法,这样做在学的知识比较少的时候也许还能对付,但一旦内容多了,就很难理清头绪。而掌握基本的解题思想方法却相对容易的多。一道题目的解答或许很长,但最主要的解题思想可能就只有一两条,大部分篇幅都是推理或运算。而且思想方法对数学的不同部分来说都是相通的,掌握它才是根本,才是应万变之策。解题方法绝不是毫无根据的灵感,必是解决问题过程中深思熟虑后应运而生的途径。因而,对解题方法,重要的是理解这种思维过程,即要"透过现象看本质",思想方法源于解题的过程中,也只有通过解题过程中的独立思考、分析摸索才能掌握。


    如果有朝一日,你发现自己对数学中的知识理论和思想方法都了然于胸,那么你已经能很好地驾驭所学的知识了,再加上一些过硬的基本功,已足以应付一般的考试,但对于一个要真正学好数学的人来说,这些却远远不够。众所周知,数学需要严密的逻辑推理,但逻辑上的推理却不足以代表数学的全部。如本世纪的大数学家柯朗所说:"过分着重演绎一公式的数学特性可能失之偏颇,创造性发明以及起指导和推动作用的直觉的要素才是数学理论的核心。"数学很重要的几个因素就是就是逻辑与直觉、分析与创造、一般性与个别性,正是他们的综合交错作用才构成数学的丰富内涵。要学好数学,只有将自己置身于其中,亲自去体会、去发现。

推荐给好友:【http://www.ks5u.com/News/2007-4/1046
相关资源: 高考备考

网友评论

    现在有人对本文发表评论查看所有评论

    ,欢迎留言!个性设置

    请您文明上网、理性发言

    网站最近动态
    高考资源网(www.ks5u.com),您身边的高考专家!