高中数学对称问题分类探析 对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化,本文特作以下归纳。 一、点关于已知点或已知直线对称点问题 1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′), x′=2a-x 由中点坐标公式可得:y′=2b-y 2、点P(x,y)关于直线L:Ax+By+C=O的对称点为 x′=x-(Ax+By+C) P′(x′,y′)则 y′=y-(AX+BY+C) 事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C 解此方程组可得结论。 (- )=-1(B≠0) 特别地,点P(x,y)关于 1、x轴和y轴的对称点分别为(x,-y)和(-x,y) 2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y) 3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x) 例1 光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。 解:如图,由公式可求得A关于直线x-2y=0的对称点 A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0 `C(0, ) `直线BC的方程为:5x-6y+25=0 二、曲线关于已知点或已知直线的对称曲线问题 求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。 1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0 2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0 特别地,曲线F(x,y)=0关于 (1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0 (2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0 (3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0 除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=|f(x)|的图象。 例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1: 1)写出曲线C1的方程 2)证明曲线C与C1关于点A( , )对称。 (1)解 知C1的方程为y=(x-t)3-(x-t)+s (2)证明 在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得: s-b1=(t-a1)3-(t-a1) `b1=(a1-t)3-(a1-t)+s `B1(a1,b1)满足C1的方程 `B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上 `曲线C和C1关于a对称 我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x) `y=(x-t)3-(x-t)+s 此即为C1的方程,`C关于A的对称曲线即为C1。 三、曲线本身的对称问题 曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。 例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。 例3 方程xy2-x2y=2x所表示的曲线: A、关于y轴对称 B、关于直线x+y=0对称 C、关于原点对称 D、关于直线x-y=0对称 解:在方程中以-x换x,同时以-y换y得 (-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变 `曲线关于原点对称。 函数图象本身关于直线和点的对称问题我们有如下几个重要结论: 1、函数f(x)定义线为R,a为常数,若对任意x∈R,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。 这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。 例如对于f(x)若t∈R均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或f(t)=f(4-t)结论又如何呢?第一式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论: 2、函数f(x)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=f(b-x),则其图象关于直线x= 对称。 我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点A(2+t,f(2+t))其关于M(2,0)的对称点为A′(2-x,-f(2+x)) ∵-f(2+X)=f(2-x)`A′的坐标为(2-x,f(2-x))显然在图象上 `图象关于M(2,0)成中心对称。 若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论: 3、f(X)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。 作者简介 潭玉石:2001—2006年在湖南省一重点中学任校长,2006年至今任中山市杨仙逸中学校长。中学数学特级教师,广东省普通中学教学水平评估专家。
|
浙江省宁波市三锋教研联盟2023-2024学年高二下学期期中联考
重庆市巴蜀中学2023-2024学年高三上学期适应性月考(五)
高考资源网版权所有 ©2005-2010
未经许可,盗用或转载本站资料者,本站将追究其法律责任!