【思考】在自然界和人类社会中存在两类现象:一类是条件完全确定结果的现象,如边长为2cm的正方形的面积为4cm的平方;在标准大气压下,水被加热到100℃时一定沸腾等.另一类是条件不能完全确定结果的现象,如在相同条件下抛掷同一枚均匀的硬币,其结果可能是正面向上,也可能是正面向下,并且事先无法确定抛掷的结果是哪一种;从一批产品中任取I件,被取出的产品可能是次品,也可能是正品;从一本书中任选一页,其印刷错误可能有2个,也可能不是2个. 不确定性贯穿人类文明的一切阶段,人们都在苦苦地对付这些问题.人们经过长期实践并深人研究之后,发现这类现象虽然就每次试验或观察结果而言,具有不确定性.但在大量重复试验或观察下其结果却呈现出某种规律性.例如:多次重复投掷一枚均匀硬币,得到正面向上的次数大致占总次数的1/2左右;某品牌电视机,使用寿命大多在8000-10000小时之内,等等.我们把这种在大量重复试验或观测下,其结果所呈现出的固有规律性称为统计规律性,而把这种在个别试验中呈现出不确定性,在大量重复试验中具有统计规律性的现象,称为随机现象.概率论与数理统计就是研究随机现象的统计规律性的一门数学学科. 我们把做一件事情或观察一件事情(如投掷硬币一次),叫一个试验. 随机试验是具有以下两个特征的试验: 1.在相同条件下可以重复进行,且每次试验的结果不止一个; 2,在每次试验前不能准确预言该试验会出现哪个结果,但可以知道该次试验可能出现的全部结果. 随机试验简称试验,本书中以后提到的试验都是指随机试验. 在大量重复随机试验中,人们关心的是试验的结果,每次试验的一个可能结果称为基本事件,记作ω1,ω2,…,全部基本事件形成的集合称为基本事件集合,记作 Ω={ω1,ω2,……}. 在试验中,可能出现也可能不出现的现象称为随机事件,简称为事件,它们是基本事件集合的子集,通常用大写字母A, B,C等表示.显然,基本事件都是随机事件,反之不然. 在每次试验中,一定发生的事件称为必然事件,它是全体基本事件的集合,记作Ω;在每次试验中,一定不发生的事件称为不可能事件,它是空集,记作Φ,必然事件与不可能事件虽然不是随机事件,但为了讨论问题方便,把它们作为随机事件的极端情况 例:做试验:在装有I个红球、i个白球和I个黄球的口袋里任取两个球.那么 |
浙江省宁波市三锋教研联盟2023-2024学年高二下学期期中联考
重庆市巴蜀中学2023-2024学年高三上学期适应性月考(五)
高考资源网版权所有 ©2005-2010
未经许可,盗用或转载本站资料者,本站将追究其法律责任!