一、经典证明方法细讲 方法一: 作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P. ∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD, ∴∠EGF=∠BED, ∵∠EGF+∠GEF=90°, ∴∠BED+∠GEF=90°, ∴∠BEG=180°―90°=90° 又∵AB=BE=EG=GA=c, ∴ABEG是一个边长为c的正方形. ∴∠ABC+∠CBE=90° ∵RtΔABC≌RtΔEBD, ∴∠ABC=∠EBD. ∴∠EBD+∠CBE=90° 即∠CBD=90° 又∵∠BDE=90°,∠BCP=90°, BC=BD=a. ∴BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2 方法二 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB=∠CFD=90°, ∴RtΔCJB≌RtΔCFD, 同理,RtΔABG≌RtΔADE, ∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE ∴∠ABG=∠BCJ, ∵∠BCJ+∠CBJ=90°, ∴∠ABG+∠CBJ=90°, ∵∠ABC=90°, ∴G,B,I,J在同一直线上, 所以a^2+b^2=c^2 二、勾股数的相关介绍 ①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。 ②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。 ③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。]在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形。 三、勾股定理的命题方向 命题1:以已知线段为边,求作一等边三角形。 命题2:求以已知点为端点,作一线段与已知线段相等。 命题3:已知大小两线段,求在大线段上截取一线段与小线段相等。 命题4:两三角形的两边及其夹角对应相等,则这两个三角形全等。 命题5:等腰三角形两底角相等。
|