现代化学实验
19世纪末20世纪初,以震惊整个自然科学的电子、X射线与放射性等三大发现为标志,化学实验进入了现代发展阶段。同近代化学实验相比,现代化学实验具有如下特点。 一实验内容以结构测定和化学合成实验为主 1.结构测定实验 结构测定实验源于人们对阴极放电现象微观本质的探讨。早在1836年,法拉第就曾研究过低压气体中的放电现象。1869年,德国化学家希托夫(J.W.Hittorf,1824—1914)发现真空放电于阴极,并以直线传播。1876年,戈尔茨坦(E.Coldstein,1850—1930)将这种射线命名为“阴极射线”。1878年,英国化学家克鲁克斯(SirW.Crookes,1832—1919)发现阴极射线能推动小风车,被磁场推斥或牵引,是带电的粒子流。1897年,克鲁克斯的学生英国物理学家J.J.汤姆生(J.J.Thomson,1856—1940)对阴极射线作了定性和定量的研究,测定了阴极射线中粒子的荷质比。这种比原子还小的粒子被命名为“电子”。电子的发现,动摇了“原子不可分”的传统化学观。 1895年,德国物理学家伦琴(W.C.Rnt-gen,1845—1923)在研究阴极射线时发现了X射线。1896年,法国物理学家贝克勒(A.H.Becquerel,1852—1908)发现了“铀射线”。次年,法国著名化学家玛丽·居里(M.Curie,1867—1934)又发现了钍也能产生射线,于是她把这种现象称为“放射性”,把具有这种性质的元素称为放射性元素。居里夫妇经过极其艰苦的努力,于1898年先后发现了具有更强放射性的新元素钋和镭。随后,又花费了几年时间,从两吨铀的废矿渣中分离出0.1克光谱纯的氯化镭,并测定了镭的原子量。镭曾被称为“伟大的革命家”,克鲁克斯尖锐地评论说:“十分之几克的镭就破坏了化学中的原子论”。可见这一成果意义的重大。为此,居里夫人获得了1911年的诺贝尔化学奖。 1898年,J.J.汤姆生的学生E.卢瑟福(F.Rutherford,1871—1937)发现铀和铀的化合物发出的射线有两种不同的类型,一种是α射线,一种是β射线;2年后,法国化学家维拉尔(P.Villard,1860—1934)又发现了第三种射线γ射线。1901年卢瑟福和英国年青的化学家索迪(F.Soddy,1877—1956)进行了一系列合作实验研究,发现镭和钍等放射性元素都具有蜕变现象。据此,他们提出了著名的元素蜕变假说,认为放射性的产生是由于一种元素蜕变成另一种元素所引起的。这一成果具有革命意义,打破了“元素不能变”的传统化学观。卢瑟福也因此荣获1908年的诺贝尔化学奖。 电子、放射性和元素蜕变理论奠定了化学结构测定实验的理论基础。 1912年,德国物理学家劳埃(M.vonLaue,1879—1960)发现X射线通过硫酸铜、硫化锌、铜、氯化钠、铁和萤石等晶体时可以产生衍射现象。这一发现提供了一种在原子-分子水平上对无机物和有机物结构进行测定的重要实验方法,即X射线衍射法。 无机物的结构测定的真正开始是X射线衍射线发现以后。在此之前,象氯化钠这样简单的离子化合物的结构问题,对化学家来说都是一个难题,但运用这种方法之后,化学家才恍然大悟,原来其结构是如此简单。本世纪20—30年代,人们运用X射线衍射法分析测定了数以百计的无机盐、金属配合物和一系列硅酸盐的晶体结构。 有机物的晶体结构测定始于20年代。在此期间,人们测定了六次甲基四胺、简单的聚苯环系、己链烃、尿素、一些甾族化合物、镍钛菁、纤维素以及一系列天然高分子和人工聚合物的结构。40—50年代,有机物晶体结构分析工作更加蓬勃发展,最突出的是1949年青霉素晶体结构、1952年二茂铁(金属有机化合物)结构和1957年维生素B12结构的测定。另外,人们应用X射线衍射法还对一系列复杂蛋白质的结构进行了测定,取得了许多重大突破,为分子生物学理论的建立奠定了坚实的实验基础。 |
浙江省宁波市三锋教研联盟2023-2024学年高二下学期期中联考
重庆市巴蜀中学2023-2024学年高三上学期适应性月考(五)
高考资源网版权所有 ©2005-2010
未经许可,盗用或转载本站资料者,本站将追究其法律责任!