6.定义域优先的策略
在解函数题时,这一条极其重要。如判断函数的奇偶性,先看定义域是否关于原点对称;对变量进行换元,要记住“换元必换域”的口诀,比如令sinx+cosx=t,必须随即写上新变量t的取值范围;复合函数的内层函数的值域是外层函数的定义域,等等。
7.定义法优先的策略
定义是知识的生长点,用定义法解题是回归本源的高明方法。波利亚解题法中就有“回到定义去”的重要提醒句。
8.前提优先的策略
用均值不等式求最值的前提是“一正二定三相等”,否则用单调性解决;涉及等比数列问题,它的公比的取值情形如何?凡是欲使用韦达定理或判别式解题,要先问方程的二次项系数是否为零?
9.范围优先的策略
在三角函数这个内容里面,有一句口诀叫做“求角先求函数值,总要优先定范围”。
10.特情优先的策略
命题者出于考查严谨性的考虑,一般都有意识地在题目中设置一些特殊情况作为问题的一个小分支,这个小分支本身并不难,但要求解题者不要漏掉。比如:分母为零吗?二次项系数为零吗?等比数列的公比为1吗?直线方程的斜率存在吗?斜率为零吗?直线方程中截距为零吗?集合问题中考虑集合为空集的情形了吗?所给的集合是点集还是数集?端点值能够取到吗?求数列通项公式时,第一项是否不符合通项公式而需要单列呢?解题时要做到“先为不可胜而待敌之可胜”,就要养成特情优先的良好习惯。
|