| 更多
2016高考数学复习决胜法宝2015-10-15 11:14:00 阅读 参与讨论()马上投稿

2016高考数学复习决胜法宝   高考,成也数学,败也数学。数学,的确是不少高三考生心中的痛。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学,高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能,以不变应万变。对数学思想和方法的考查是对数学知识在更高

2016高考数学复习决胜法宝

  高考,成也数学,败也数学。数学,的确是不少高三考生心中的痛。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学,高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能,以不变应万变。对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。

  

  那么,如何提高数学复习的针对性和实效性?如何掌握数学复习知识点和复习重点?如何让自己在数学的复习中建立系统框架结构,高考专家谢老师今天就带领大家找到数学复习决胜法宝:

  一、高考数学复习的八大诀窍:

  1、认真研读《说明》《考纲》

  《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确考什么考多难怎样考这三个问题。

  命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

  《考纲》明确指出创新意识是理性思维的高层次表现。因此试题都比较新颖,活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。

  2.多维审视知识结构

  高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

  3.把答案盖住看例题

  参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的题眼及巧妙之处,收益将更大。

  4.研究每题都考什么

  数学能力的提高离不开做题,熟能生巧这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到很多题。你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

  一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。道题的价值不在于做对、做会,而在于你明白了这题想考你什么。

  5.答题少费时多办事

  解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要小题大做,只要写出得分点即可。

  6.错一次反思一次

  每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。因此平时注意把错题记下来,做错题笔记包括三个方面:(1)记下错误是什么,最好用红笔划出。(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。

  7.分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。(1)遗憾之错。就是分明会做,反而做错了的题;(2)似非之错。记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整等等。(3)无为之错。由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。原因找到后就消除遗憾、弄懂似非、力争有为。切实解决会而不对、对而不全的老大难问题。

  8.逐步养成优秀的学习习惯

  柏拉图说:优秀是一种习惯。好的习惯终生受益,不好的习惯终生后悔、吃亏。如审题之错是否出在急于求成?可采取一慢一快战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。另外将平常的考试看成是积累考试经验的重要途径,把平时考试当作高考,从各方面不断的调试,逐步适应。注意书写规范,重要步骤不能丢,丢步骤等于丢分。根据解答题评卷实行分段评分的特点,你不妨做个心理换位,根据自己的实际情况,从平时做作业全做全对的要求中,转移到立足于完成部分题目或题目的部分上来,不要在一道题上花费太多时间,有时放弃可能是最佳选择。

  

  二、高考数学复习的七大主干知识点

  1、函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

  2、平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

  3、数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

  4、不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

  5、概率和统计。这部分和我们的生活联系比较大,属应用题。

  6、空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

  7、解析几何。是高考的难点,运算量大,一般含参数。

  三、高考数学复习的两大核心重点

  重点一:覆盖二十二个章节

  1)、必修模块:重点是集合与函数,基本初等函数Ⅰ(指、对、幂函数),基本初等函数Ⅱ(三角函数),三角恒等变换,解三角形,平面向量,不等式(指的是数学Ⅵ中的相应内容),数列,直线与方程,圆与方程,空间几何体、点、直线、平面之间的关系(指的是数学Ⅱ中的相应内容),算法初步,统计(指的是数学Ⅲ中的统计内容),概率。(共15章)

  2)、必选模块:理科5章,文科3章。文理,圆锥曲线与方程,导数及其应用,推理与证明。理科,空间向量与立体几何,计数原理与统计概率。

  3)、选修专题:(共3个专题)

  a.几何证明,重点复习相似三角形和圆的内容。

  b.坐标系与参数方程:极坐标系,掌握极坐标与直角坐标系的相互转化,以及简单曲线极坐标方程,如:直线与圆。对于圆的极坐标方程需掌握以下几种:①圆心在极点上;②圆心在极轴上且过极点;③圆心在极轴的反向延长线上且过极点;④圆心在极垂线上过极点;⑤圆心在极垂线的方向延长线上,过极点。参数方程中需要掌握的,①直线的参数方程;②圆的参数方程;③椭圆的参数方程。

  c.不等式的重点内容:①不等式的基本性质,②证明不等式的基本方法,③用数学归纳法证明不等式。

  重点二:突出九个重要方面:

  函数、三角函数、平面向量、数列、不等式、圆锥曲线与方程、立体几何与空间向量、统计与概率、导数及其应用。

  1)解析几何:

  a.直线的倾斜角、斜率及直线方程的基本形式;

  b.圆的方程:圆的标准方程,一般方程,以及两者之间的转化,通过转化确定圆的半径、圆心;

  c.椭圆、双曲线、抛物线的定义、标准方程及几何性质;

  d.直线与直线、直线与圆的位置关系;

  e.直线与椭圆、直线与抛物线的位置关系。

  说明:文理科的大纲要求不同,需根据大纲要求进行区分复习。

  a.文理科对直线的倾斜角、斜率及直线方程的基本形式、圆的方程的要求掌握的程度是一致的;

  b.理科:理解、掌握椭圆、抛物线的知识,对双曲线的知识内容达到了解即可;

  c.文科:理解、掌握椭圆的知识,对抛物线、双曲线的知识内容达到了解即可;

  d.直线与直线、直线与圆的位置关系、直线与椭圆、直线与抛物线的位置关系是历年综合题中经常出现的两类问题。解析几何是历年来把关题之一,也是学生感觉比较困难的题,所以在复习的时候,要帮助学生把基本知识点落实到位,建立解题思路与解题策略。

  2)空间几何体与空间向量:

  三视图;空间线线、线面、面面平行及垂直关系的判定和性质;柱、锥、台、球的性质及表面积、体积的计算.(文理科要求相同)空间向量的坐标运算;空间角和距离的计算;(仅有理科考)

  【注意】空间向量的坐标运算;空间角和距离的计算,在解答题出现空间角的计算、距离的求解,都需要运用空间向量坐标系进行求解,因此在复习中应重点凸显。而空间线线、线面、面面平行及垂直关系的判定和性质是解决上述问题的基本,是复习的重中之重。

  3)统计与概率:

  核心考点是抽样方法,用样本估计总体(频率分布直方图、折线图、茎叶图、平均数、中位数、众数、方差和标准差);古典概型和几何概型;【文理考察一致】

  五类事件的概率(等可能性事件的概率、互斥事件有一个发生的概率、对立事件的概率、相互独立事件同时发生的概率、次独立重复试验中某事件恰好发生次的概率及二项分布)只有理科考察;条件概率(理科);离散型随机变量的分布列、期望值与方差(理科)。

  【注意】方差是初中就已涉及,也属文科的考察点。

  4)导数:

  a.导数的概念及其几何意义,特别是几何意义,文理必须都要掌握。

  b.导数公式以及求导法则,文理科的要求一致。这一方面,对文科的要求加大,增加了对指数、对数、三角函数、分式函数等求导的要求。无论文科还是理科,都必须熟练掌握公式,并且能够灵活运用。

  c.复合函数的求导法则(理科仅掌握一次多项式求导即可)。

  d.导数与函数的单调性和极值;导数与函数的最大值和最小值;导数与不等式的证明。

  e.导数与函数的零点;考察最多的5个方面。

  f.定积分与微积分基本定理。理科考察,文科不作要求。

  

  四、高考数学易错的知识点及解析

  (一)、集合与简易逻辑

  1、遗忘空集致误

  错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学AB≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

  2、忽视集合元素的三性致误

  错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

  3、四种命题的结构不明致误

  错因分析:如果原命题是“若AB”,则这个命题的逆命题是“若BA”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“ab都是偶数”的否定应该是“ab不都是偶数”,而不应该是“a b都是奇数”。

  4、充分必要条件颠倒致误

  错因分析:对于两个条件AB,如果A=>B成立,则AB的充分条件,BA的必要条件;如果B=>A成立,则AB的必要条件,BA的充分条件;如果A<=>B,则AB互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

  5、逻辑联结词理解不准致误

  错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:pq<=>p真或q真,命题pq<=>p假且q(概括为一真即真);命题pq<=>p真且q真,pq<=>p假或q(概括为一假即假);┐p<=>p假,┐p<=>p(概括为一真一假)

  (二)、函数与导数

  1、求函数定义域忽视细节致误

  错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0(2)偶次被开放式非负;(3)真数大于0(4)00次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

  2、带有绝对值的函数单调性判断错误

  错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增()区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增()区间即可。

  3、求函数奇偶性的常见错误

  错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

  4、抽象函数中推理不严密致误

  错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

  5、函数零点定理使用不当致误

  错因分析:如果函数y=f(x)在区间[ab]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(ab)内有零点,即存在c(ab),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。

  6、混淆两类切线致误

  错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。

  7、混淆导数与单调性的关系致误

  错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增()的充要条件是这个函数的导函数在此区间上恒大()于等于0,且导函数在此区间的任意子区间上都不恒为零。

  8、导数与极值关系不清致误

  错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

  (三)、数列

  1、用错基本公式致误

  错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

  2anSn关系不清致误

  错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:

  这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1n2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。当题目中给出了数列{an}anSn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。

  3、对等差、等比数列的性质理解错误

  错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(abcR),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,SmS2m-SmS3m-S2m(mN*)是等差数列。解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。

  4、数列中的最值错误

  错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。

  5、错位相减求和时项数处理不当致误

  错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:(a)原来数列的第一项;(2)一个等比数列的前(n-1)项的和;(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。

  高考专家谢老师在告诉大家一个数学学习和复习的捷径,那就是坚持三问法:第一问自己:学懂了没有?主要解决是什么的问题,即学了什么知识;第二问自己:领悟了没有?”—主要解决为什么的问题,即用了什么方法;第三问自己:会用了没有?”—主要解决做什么的问题,即解决了什么问题。

  考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类,形成自己的数学知识框架结构,举一反三,触类旁通。

  高考公益咨询QQ群:463474760,入群验证:搜狐;

  公益微信公众平台:sxgaokao985,名称:陕西第一高考

  

相关资源:

网友评论

    现在有人对本文发表评论查看所有评论

    ,欢迎留言!个性设置

    请您文明上网、理性发言

    网站最近动态
    高考资源网(www.ks5u.com),您身边的高考专家!