三角函数的图象与性质一.【课标要求】 1.能画出y=sin x, y=cos x, y=tan x的图像,了解三角函数的周期性; 2.借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最小值、图像与x轴交点等); 3.结合具体实例,了解y=asin(wx+φ)的实际意义;能借助计算器或计算机画出y=asin(wx+φ)的图像,观察参数a,w,φ对函数图像变化的影响二.【命题走向】近几年
高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法预测
2010年高考对本讲内容的考察为: 1.题型为1道选择题(求值或图象变换),1道解答题(求值或图像变换); 2.热点问题是三角函数的图象和性质,特别是y=asin(wx+φ)的图象及其变换;三.【要点精讲】 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是 ,