算法案例一.【课标要求】通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。二.【命题走向】算法是高中数学新课程中的新增内容,本讲的重点是几种重要的算法案例思想,复习时重算法的思想轻算法和程序的构造。预测
2010年高考队本讲的考察是:以选择题或填空题的形式出现,分值在5分左右,考察的热点是算法实例和传统数学知识的结合题目三.【要点精讲】 1.求最大公约数(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数 (3)辗转相除法辗转相除法求两个数的最大公约数,其算法可以描述如下: ① 输入两个正整数m和n; ② 求余数r:计算m除以n,将所得余数存放到变量r中; ③更新被除数和余数:m=n,n=r; ④判断余数r是否为0。若余数为0,则输出结果;否则转向第②步继续循环执行如此循环,直到得到结果为止。(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术。在《九章算术》中记载了更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之步骤: