基本信息
例1:设点a(2,2),f(4,0),点m在椭圆 上运动。 (1)求|ma|+|mf|的最小值。 (2)求|ma|+ |mf|的最小值。例2:已知ab是抛物线y2=2px的任意一条焦点弦,且a(x¬1, y1),b(x¬2, y2),(1)求证y1y2=-p2, x1x2= (2)若弦ab被焦点分成长为m, n的两部分,求证: 例3:设a(x1, y1)是椭圆x2+2y2=2上一点,过点a作一条斜率为 的直线l,d为原点到l的距离,r1, r2分别为点a到两焦点的距离,求证: 是定值。例4:设椭圆c与双曲线d有共同的焦点f1(-4,0),f2(4,0),并且椭圆的长轴长是双曲线实轴的长的2倍,试求椭圆c与双曲线d交点的轨迹方程。