1.设y=-2exsinx,则y′等于( )
a.-2excosx b.-2exsinx
c.2exsinx d.-2ex(sinx+cosx)
解析:选d.∵y=-2exsinx,
∴y′=(-2ex)′sinx+(-2ex)·(sinx)′
=-2exsinx-2excosx
=-2ex(sinx+cosx).
2.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( )
a.4 b.-
c.2 d.-
解析:选a.由条件知g′(1)=2,
又∵f′(x)=[g(x)+x2]′=g′(x)+2x,
∴f′(1)=g′(1)+2=2+2=4.
资源难易程度:★★★★★★★★★★★★★★★
高考资源网版权所有 ©2005-2014
未经许可,盗用或转载本站资料者,本站将追究其法律责任!