学习目标: 学习重点: 对物体进行正确的受力分析 学习难点: 对物体进行正确的受力分析《回顾﹒预习》 一、物体受力分析 1.明确研究对象在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简洁地得到解决.研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(既研究对象所受的外力),而不分析研究对象施予外界的力. 2.按顺序找力必须是先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力). 3.只画性质力,不画效果力画受力图时,只能按力的性质分类画力,不能按作用效果(拉力、压力、向心力等)画力,否则将出现重复. 4.需要合成或分解时,必须画出相应的平行四边形(或三角形)在解同一个问题时,分析了合力就不能再分析分力;分析了分力就不能再分析合力,千万不可重复. 二、正交分解法: 1.定义: 2.步骤: 第一步,立正交 x、y坐标,这是最重要的一步,x、y坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x与y的方向一定是相互垂直而正交。第二步,将题目所给定跟要求的各矢量沿x、y方向分解,求出各分量,凡跟x、y轴方向一致的为正;凡与x、y轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。第四步,根据各x、y轴的分量,求出该矢量的大小,一定要表明方向,这是最终的一步。求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选定的相互垂直的x轴和y轴方向分解,然后分别求出x轴方向、y方向的合力σfx、σfy,由于σfx、σfy相互垂直,可方便的求出物体所受外力的合力σf(大小和方向)《例题讲解》例1分析物体a、b的受力情况: 例2共点力f1=100n,f2=150n,f3=300n,方向如图1所示,求此三力 的合力。 图 1 巩固练习: 1.作出下列物体的受力示意图: