教学过程:
提出问题:
问题1:桌面上有3枚正面朝上的硬币,每次用双手同时翻转2枚硬币,那么无论怎么翻转,都不能使硬币全部反面朝上。你能解释这种现象吗?
学生尝试用直接证明的方法解释。
采用反证法证明:假设经过若干次翻转可以使硬币全部反面向上,由于每枚硬币从正面朝上变为反面朝上都需要翻转奇数次,所以 3 枚硬币全部反面朝上时,需要翻转 3 个奇数之和次,即要翻转奇数次.但由于每次用双手同时翻转 2 枚硬币, 3 枚硬币被翻转的次数只能是 2 的倍数,即偶数次.这个矛盾说明假设错误,原结论正确,即无论怎样翻转都不能使 3 枚硬币全部反面朝上试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯! src="/article/article/20111010164652001.gif" width=2>.
资源难易程度:★★★★★★★★★★★★★★★
高考资源网版权所有 ©2005-2010
未经许可,盗用或转载本站资料者,本站将追究其法律责任!