1.曲线y=2x-x3在x=-1处的切线方程为( ) a.x+y+2=0 b.x+y-2=0 c.x-y+2=0 d.x-y-2=0 解析:∵y=2x-x3, ∴y′=2-3x2,y′|x=-1=2-3=-1. 于是,它在点(-1,-1)处的切线方程为y+1=-(x+1),即x+y+2=0. 答案:a 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+x2,则f′(1)=( ) a.-1 b.-2 c.1 d.2 解析:f′(x)=2f′(1)+2x,令x=1,得f′(1)=2f′(1)+2, ∴f′(1)=-2. 答案:b 3.下列图