(17) 向量的概念及向量的基本运算 ●知识梳理 1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量. (2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a,b,…或用 , ,…表示. (3)模:向量的长度叫向量的模,记作|a|或| |. (4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定. (5)单位向量:长度为1个长度单位的向量叫做单位向量. (6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线. (7)相等的向量:长度相等且方向相同的向量叫相等的向量. 2.向量的加法:(1)定义:求两个向量和的运算,叫做向量的加法. (2)法则:三角形法则;平行四边形法则. (3)运算律:a+b=b+a;(a+b)+c=a+(b+c). 3.向量的减法:(1)定义:求两个向量差的运算,叫做向量的减法. (2)法则:三角形法则;平行四边形法则. 4.实数与向量的积:(1)定义:实数λ与向量a的积是一个向量,记作λa,规定:|λa|=|λ||a|.当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方