2.10 函数模型及其应用考纲要求 1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 1.几类函数模型及其增长差异 (1)几类函数模型函数模型 函数解析式一次函数模型 f(x)=ax+b(a,b为常数,a≠0) 二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0) 指数函数模型 f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型 f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型 f(x)=axn+b(a,b为常数,a≠0) (2)三 种增长型函数之间增长速度的比较 ①指数函数y=ax(a>1)与幂函数y=xn(n>0) 在区间(0,+∞)上,无论n比a大多少,尽管在x的一定范围内ax会小于xn,但由于ax的增长____xn的增长,因而总存在一个x0,当x>x0时有______. ②对数函数y=logax(a>1)与幂函数y=xn(n>0) 对数函数y=logax(a>1)的增长速度,不论a与n值的大小如何总会____y=xn的增长速度,因而在定义域内总存在一个实数x0,使x>x0时有______.由①②可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0,+∞)上,总会存在一个x0,使x>x