基本信息
第13-16课时 课题:三角问题的题型与方法一.复习目标: 1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等. 2.熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等.并能应用这些方法进行三角函数式的求值、化简、证明. 3.掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题. 4.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. 5.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 6.理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化. 二.考试要求: 1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。 2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同解三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。 3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。 4.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。 5.了解正弦函数、余弦函数、正切函数的图象和性质,会用“五点法”画正弦函数、余弦函数和函数y=asin(ωx+ψ)的简图,理解a、ω、ψ的物理意义。 6.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x表示。 7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题。三.教学过程:(ⅰ)基础知识详析(一)三角变换公式的使用特点 1.同角三角函数关系式 (1)理解公式中“同角”的含义. (2)明确公式成立的条件。例如,tan α+1=sec α,当且仅当 ≠k (3)掌握公式的变形.特别需要指出的是 sinα=tanα•cosα, cosα=cotα•sinα.它使得“弦”可以用“切”来表示. (4)使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法. (5)几个常用关系式