平面向量与几何的综合应用内容为每年
高考必考内容,多以选择题(填空题)形式考查平面向量相关概念的几何意义及与平面几何知识的综合应用,或作为题设条件与解析几何知识综合以解答题形式出现,分值在4-12分左右;难度系数在0.3~0.6之间. 考试要求 ⑴理解平面向量的概念、两个向量平行或共线及相等的几何意义;⑵掌握向量的加减法运算及数乘运算几何意义,了解向量线性运算的性质及其几何意义;⑶了解平面向量基本定理及其意义;⑷理解平面向量的数量积的含义,了解平面向量的数量积与向量投影的关系,能用数量积表示两向量的夹角,会用数量积判断两向量的垂直关系;⑸会用向量方法解决简单的平面几何问题和简单力学问题及其他一些实际问题. 题型一 平面向量加减法及数乘运算的几何意义应用例1 ⑴已知 为平面上四点,且 , ,则( ) a.点m在线段ab上 b.点b在线段am上 c.点a在线段bm上 d.o、a、m、b四点共线 ⑵在 中,点 在 上, 平分 .若 , , , ,则 ( ) a. b. c.