近几年
高考中,概率与统计的应用题多出现在解答题中,难度以中档和中档偏易为多,难度值在0.5~0.8.命题形式以学生生活实践为背景材料进行考查. 考试要求:(1)以大纲为准则,考查相关概率在实际问题中的应用;(2)理解各种统计方法;(3)会分析样本数据,并会求数据的特征数字(如平均数、标准差);(4)会用正确的算法求解概率统计和其他数学知识的交汇(如三角函数、框图、算法、几何等)问题. 题型一 随机抽样方法及其应用 例1 (1)用系统抽样方法从160名学生中抽取容量为20的样本,将160名学生从1—160编号,按编号顺序平均分成20组(1—8号,9—16号,…,153—160号),若第16组抽出的号码是126,则第1组用抽签方法确定的号码是 . 点拨:本题考查随机抽样的系统抽样.三种抽样方法均为等概率抽样,系统抽样是按简单随机抽样抽取第一个样本,再按相同的间隔抽取其他样本,即抽取号码成等差数列.公式为 为间隔长, 为组数, 为第一个样本号 . 解: 易错点:式中的第几组的组号应减“1”. 变式与引申1:⑴某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号). 若第5组抽出的号码为22,则第8组抽出的号码应是 .若用分层抽样方法,则40岁以下年龄段应抽取 人. ⑵从2004名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率( )