统计与统计案例是高中数学的重要学习内容,它是一种处理问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,统计的基础知识成为每个公民的必备常识. 由于中学数学中所学习统计与统计案例内容是基础的,
高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考
试卷中,一般是2—3个小题或一个解答题,难度值在0.5~0.8. 考试要求:统计:(1)随机抽样:① 理解随机抽样的必要性和重要性.② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2):用样本估计总体① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.② 理解样本数据标准差的意义和作用,会计算数据标准差.③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(3)变量的相关性:① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 统计案例:了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析:了解回归的基本思想、方法及其简单应用. 题型一 抽样方法 例1(1)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . (2)利用简单随机抽样的方法,从n个个体(n>13)中抽取13个个体,依次抽取,若第