推理证明与算法初步是我们
高考关注的几个新课标中重点话题,主要涉及到合情推理和演绎推理,直接证明和间接证明,以及算法初步中的框图知识和算法案例等. 题型可能是选择题、填空题,主要考查类比或归纳推理、循环结构为主的框图等;也可能是解答题,结合多个知识点进行命题的综合
试题.其中推理与证明部分常与数列、不等到式问题综合,难度一般在 之间. 考试要求 (1)合情推理与演绎推理① 了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;② 了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③ 了解合情推理和演绎推理之间的联系和差异;(2)直接证明与间接证明① 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;② 了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点;(3)了解算法的含义;理解程序框图的三种基本结构:顺序、选择、循环;理解几种基本算法语句. 题型一:合情推理例1(1)若∆abc内切圆半径为r,三边长为a、b、c,则∆abc的面积s=12 r (a+b+c) 类比到空间,若四面体内切球半径为r,四个面的面积为s1、s2 、s3 、s4,则四面体的体积= .(2)在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,