第十一节 轨迹方程的求法 知识梳理一、“曲线的方程”和“方程的曲线”的概念在直角坐标系中,如果某曲线c(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.二、求曲线的(轨迹)方程求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握外,还充分考查了各种数学思想方法及一定的推理能力和运算能力.它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程.因此在求动点轨迹方