1.若f(sin x)=3-cos 2x,则f(cos x)等于( ) a.3-cos 2x b.3-sin 2x c.3+cos 2x d. 3+sin 2x 解析:选c.∵cos x=sin(π2-x), ∴f(cos x)=f(sin(π2-x)) =3-cos[2(π2-x)]=3-cos(π-2x) =3+cos 2x. 2.已知cos(π6-α)=12,则sin(π3+α)=________. 解析:∵(π6-α)+(π3+α)=π2, ∴sin(π3+α)=sin[π2- (π6-α)]