分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在
高考试题中占有重要位置,在选择题、填空题、解答题中都会涉及到分类讨论的思想方法,其难度在0.4~0.6之间. 考试要求:《考试说明》强调,对于数学思想和方法的考查要与数学知识的考查结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时,要从学科整体意识和思想含义上立意,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度. 题型一 由概念引起的分类讨论 例1.平面直角坐标系 中,直线 与抛物线 相交于 、 两点.求证:“如果直线 过点 ,那么 ”是真命题. 点拨:(1)联立直线和抛物线,根据向量数量积定义,利用根与系数的关系,可求得 ;(2)设直线方程时须考虑直线斜率是否存在. 证明:设过点 的直线 交抛物线 于点 . (1)当直线 的钭率不存在时, 直线 的方程为 ,此时,直线 与抛物线相交于 . ∴ . (2)当直线 的斜率存在时,设过点 的直线 的方程为 ,