两类不等式恒成立问题的求解策略
不等式恒成立问题是数学试题中的重要题型,涉及数学中各部分知识,但主要是函数中的不等式恒成立问题和数列中的不等式恒成立问题,涉及题型一般有两类:一是已知不等式恒成立,求参数的取值范围,解决这类问题的基本方法是相同的,首选方法是利用分离参数转化为求新函数、新数列的最值问题,如果不能分离参数或者分离参数比较复杂时,一般选择函数的方法,通常利用函数的最值解决;二是证明不等式恒成立,在函数中一般选择以算代证,即通过求函数的最值证明不等式.在数列中,很多时候可以与放缩法结合起来,对所证不等式的一侧进行适当放大或缩小,下面分别举例说明.
一、函数中的不等式恒成立问题
函数是不等式恒成立问题的主要载体,通常通过不等式恒成立问题考查等价转化思想、函数的最值或值域,对涉及已知函数在给定区间上恒成立,求参数的取值范围、证明不等式等问题,大多数题目可以利用分离参数的方法,将问题转化为求函数的最值或值域问题.
资源难易程度:★★★★★★★★★★★★★★★
高考资源网版权所有 ©2005-2014
未经许可,盗用或转载本站资料者,本站将追究其法律责任!