高三数学复习之曲线与方程、圆的方程 1.曲线c的方程为:f(x,y)=0曲线c上任意一点p(x0,y0)的坐标满足方程f(x,y)=0,即f(x0,y0)=0;且以f(x,y)=0的任意一组解(x0,y0)为坐标的点p(x0,y0)在曲线c上。依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点p(x,y)的轨迹方程即求点p的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。 方程所表示的曲线是: ( )