1.已知集合a={0,1,2,3,4,5},b={1,3,6,9},c={3,7,8},则(a∩b)∪c等于( )
a.{0,1,2,6,8} b.{3,7,8}
c.{1,3,7,8} d.{1,3,6,7,8}
[答案] c
[解析] a∩b={1,3},(a∩b)∪c={1,3,7,8},故选c.
2.(09·陕西文)定义在r上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有<0,则( )
a.f(3)<f(-2)<f(1) b.f(1)<f(-2)<f(3)
c.f(-2)<f(1)<f(3) d.f(3)<f(1)<f(-2)
[答案] a
[解析] 若x2-x1>0,则f(x2)-f(x1)<0,
即f(x2)<f(x1),
∴f(x)在[0,+∞)上是减函数,
∵3>2>1,∴f(3)<f(2)<f(1),
又f(x)是偶函数,∴f(-2)=f(2),
∴f(3)<f(-2)<f(1),故选a.
3.已知f(x),g(x)对应值如表.
x |
0 |
1 |
-1 |
f(x) |
1 |
0 |
-1 |
x |
0 |
1 |
-1 |
g(x) |
-1 |
0 |
1 |
则f(g(1))的值为( )
a.-1 b.0
c.1 d.不存在
[答案] c
[解析] ∵g(1)=0,f(0)=1,∴f(g(1))=1.
4.已知函数f(x+1)=3x+2,则f(x)的解析式是( )
a.3x+2 b.3x+1
c.3x-1 d.3x+4
[答案] c
[解析] 设x+1=t,则x=t-1,
∴f(t)=3(t-1)+2=3t-1,∴f(x)=3x-1.
5.已知f(x)=,则f(-1)+f(4)的值为( )
a.-7 b.3
c.-8 d.4
[答案] b
[解析] f(4)=2×4-1=7,f(-1)=-(-1)2+3×(-1)=-4,∴f(4)+f(-1)=3,故选b.
资源难易程度:★★★★★★★★★★★★★★★
高考资源网版权所有 ©2005-2010
未经许可,盗用或转载本站资料者,本站将追究其法律责任!