一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。定理1 若sn表示{an}的前n项和,则s1=a1, 当n>1时,an=sn-sn-1. 定义2 等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:sn= ;3)an-am=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则an+am=ap+a¬q;5)对任意正整数p, q,恒有ap-aq=(p-q)(a2-a1);6)若a,b至少有一个不为零,则{an}是等差数列的充要条件是sn=an2+bn. 定义3 等比数列,若对任意的正整数n,都有 ,则{an}称