第八章 平面向量 一、基础知识定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。定理2 非零向量a, b共线的充要条件是存在实数 0,使得a= f 定理3 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。定义3 向量的坐标,在直角坐标系中,取与x轴,y轴